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Abstract— We consider stochastic numerical solvers for deter-
ministic elliptic Partial Differential Equation (PDE) problems.
We concentrate on those that are characterized by their multi-
domain or/and multi-physics nature. In particular we consider
either plain random walk on spheres methods or synergies of
conventional deterministic PDE solving methods and traditional
probabilistic Monte Carlo approaches. Our main objectives are
two. One is to clearly define the context and the practical
approach concerning the use of deterministic components that
lead to effective numerical solvers for linear deterministic PDEs.
The other is the design and implementation of a proof-of-
concept computational framework that allows experimentation
in order to elucidate the capabilities and identify the emerging
computational characteristics of the proposed approaches. A
class of model problems in two and three space dimensions
are first considered and experimental results are presented and
discussed.

Keywords – Numerical solution of PDEs, MultidDo-
main MultiPhysics problems, Monte Carlo methods, Random
Walk on Spheres.

I. INTRODUCTION

The Monte Carlo method has the capability to provide
approximate solutions to a variety of mathematical problems,
not necessarily with probabilistic content or structure, by
performing statistical sampling experiments. About a century
has been passed since the discovery of methods which based
on the Monte Carlo concept provide numerical approxima-
tions to Partial Differential Equation (PDE) problems. These
methods generate random numbers and by observing certain
of their characteristics and behavior are capable of calculat-
ing approximations to the solutions. Specifically, it was [35]
who first considered the relationship between stochastic
processes and parabolic differential equations followed by
[9] who proposed numerical procedures for elliptic PDEs
while [26] were the fist to dignify this stochastic approach
with a name referring to the gambling facilities available at
the Monte Carlo city and propose it as a generic term for
numerical methods that use sampling of random numbers.

Since then Monte Carlo methods have been commonly,
and in fact heavily, used and still are for many important
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problems. For example the U.S.A. Department of Energy
claimed that Monte Carlo simulations have consistently
consumed up to a half of their high-performance cycles since
the beginning of its super-computing facilities. Nevertheless,
they have not be much utilized for linear PDE-based applica-
tions. They are generally considered as methods of last resort
ideally suitable only for problems either in high dimensions
or very complex geometries [23]. It is interesting to point out
that the Monte Carlo pioneer Mark Kac’s say ”You use Monte
Carlo methods until you understand the problem” several
years ago describes accurately how most of us currently view
Monte Carlo methods.

PDE problems have been related to Monte Carlo in several
ways (see [20] for a recent survey). The famous Feynman-
Kac formula for example, establishes an interesting link
between PDEs and stochastic processes. Monte Carlo meth-
ods has been, and to a great extent still remains, the only
computational choice for several non-linear problems while
it has been recognized as a good choice for many other
computationally difficult non-linear problems. In addition
they seem to be a natural choice for any differential equation
in which one or more of the terms is a stochastic process, thus
resulting in a solution which is itself a stochastic process.
This is clearly depicted by the plethora of very recent Monte
Carlo based research efforts devoted to numerical solution of
such equations commonly known as stochastic differential
equations (see for example [37], [1] for time depended
problems and [3], [25], [37], [2], [46] for elliptic problems).

As already mentioned even fundamental linear PDEs are
strongly related to stochasticity. For example, it is known that
diffusion is in fact a form of Brownian motion at microscopic
scale. This provided enough motivation to the several at-
tempts to develop and promote Monte Carlo based numerical
solvers for time depended PDEs (e.g. [19], [8], [17], [14] and
in particular [20]). Linear non-stochastic elliptic boundary
value problems are also strongly connected to probability
(rigorous measure theory). For example, integrals with re-
spect to certain measure have been recognized as solutions
of certain parabolic or elliptic differential equations [9]. It is
worth to mention that there are several recent research efforts
concerning probabilistic interpretations of harmonicity and
of fundamental elliptic PDEs using Brownian motion and
stochastic calculus (see [34] and reference therein).

In this paper we restrict our investigation on the effec-
tiveness of Monte Carlo methods for the numerical solution
of linear elliptic PDEs and we concentrate on the Poisson
equation. It has to be pointed out that although there has
been, and currently exist, significant research activity on
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this subject, the proposed methods have not attracted so
far the expected attention. Furthermore, one can find very
few software components1 that are publicly available and
appropriate to support the experimentation which is much
needed for elucidating the characteristics and idiosyncrasy
of the proposed methods and convincing both researchers
and practitioners that can be effectively used for real-world
problems as for example the one considered in[41].

In this paper we restrict ourselves on rectangular multi-
domains in two and three dimensions and we focus on the
implementation of a computational framework that allows
easy experimentation with hybrid methods consisting of a
combination of mainly two steps:
• Stochastic pre-processing: A Monte Carlo-based walk

on spheres approach is utilized to decouple the original
PDE problem into a set of independent PDE sub-
problems.

• Deterministic solving: Any of the resulting sub-
problems is numerical solved independently by means
of selected finite element schemes.

It is our believe that the proposed and implemented frame-
work promotes an interesting new concept in solving deter-
ministic PDEs and not only supports experimentation but it
has the potential to become a practical tool too.

The rest of this paper is organized as follows. In section II
we present a review of existing approaches for the numerical
solution of linear elliptic PDEs using Monte Carlo based
methods. We also present the mathematical background and
the associated generic algorithm for our stochastic/determin-
istic solving framework and system and briefly comment on
its characteristics. Implementation issues are addressed in
section III which are coupled with installation and usage
details. A summary of the numerical experiments performed
can be found in section IV. Our concluding remarks together
with our vision for future research actions are given in
section V.

II. MATHEMATICAL BACKGROUND

A. Monte Carlo methods for linear elliptic PDES

Model Carlo based stochastic-deterministic hybrid meth-
ods are not new. As mentioned above, Currant [9] was the
first to mention the use of Monte Carlo methods for solving
non-stochastic PDE problems. Nevertheless, it was Muller
[31] who based on the, then classified, work of Metropolis
[26] first proposed a particular associated numerical scheme.
His work followed by others (see for example [13]) has
actually modivated researcher to build a special purpose
machines [39] and also consider particular applications [38].

Related recent work have recently appeared in the follow-
ing papers [45], [5], [10], [27], [28], [11] and in particular
those in the past decade [22], [24], [17], [15], [30], [29],
[12], [32], [18], [7], [37], [42], [33], [43], [41], [44]. This
recent excellent work have so far received minimal attention
from our scientific community. As it has been observed (e.g.

1Searching, for example, with “Monte Carlo” as keyword in TOMS
BibTeX bibliography results with just 10 items.

from citation count at scopus) it has not been accepted as
widely as it should be according to our believe.

It is interesting to mention that in our study we consider
the integration of stochastic solvers in the numerical solution
of PDEs only at continuous level. Specifically, we do not
consider studies like the one found in [44] which deals
with a Monte Carlo method for the numerical solution of
the linear system that arises from the discretization of the
Poisson equation on a 2-dimensional rectangular domain
using the 5-point-star finite difference scheme with uniform
discretization step. We believe that approaches may have
their value but do not fit into the meta-computing type of
solvers we envision in our study. We should mention that
(excluding just a few exceptions) most of the related work
mentioned so far does not focus on the efficient implementa-
tion of Monte Carlo solvers in general and on modern parallel
computing systems in particular. It is plausible in general
why the multicore available systems have not attracted Monte
Carlo methods at least as much as expected2.

B. Stochastic/deterministic elliptic PDE solvers

We consider the following elliptic boundary value problem

Lu(x) = f(x) x ∈ D ⊂ Rd, (1)

Bu(x) = g(x) x ∈ ∂D, (2)

where L is an elliptic differential operator, B a boundary
operator and d ∈ N. We assume that the regularity conditions
for the closed domain D, the operators L and B and the
given functions f(x) and g(x) are satisfied. These conditions
guarantee the existence and uniqueness of the solution u(x)
in C2(D ∩ ∂D) of problem (1)–(2). We furthermore assume
that the domain D consists of (or can be splitted into) ND
subdomains, i.e.

D = ∪ND
µ=1Dµ (3)

and that Lµ and fµ are the restrictions of L and f on Dµ
while Bµ and gµ are the restrictions of B and g on ∂Dµ∩∂D.
We finally define the interface between the two subdomains
Dµ and Dν as

Iµ,ν = ∂Dµ ∩ (∂Dν ∪ Dν) ⊂ Rd−1, µ, ν = 1, . . . ,ND.
(4)

Assuming µ 6= ν.
Obviously we consider only those interfaces for which we

have that Iµ,ν 6= ∅.
It is important to point out that the above generic method-

ology becomes particularly attractive in several real-world
configurations, for example when the restrictions of the
elliptic operator L is not the same in all subdomains, when
there exist singularity points in some subdomains, when
the PDE domain Ω is complex and can be simplified if
decomposed in subdomains . . . . In such cases it is very
important that one selects the most appropriate local solver
tailored to each particular subdomain and the restrictions of
the operators and functions on it. Furthermore, the above
scheme offers us the possibility of computing the solution

2http://www.oxford-man.ox.ac.uk/gpuss

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES Volume 9, 2015

ISSN: 1998-0140 741

http://www.oxford-man.ox.ac.uk/gpuss


Data: i1, i2, . . . , iN : the ids of the subdomains in which
we wish to compute the solution.

Result: ũµ, µ = i1, . . . , iN : computer approximations
of the restrictions of the exact solution u in the
subdomains Dµ, µ = i1, . . . , iN .

// PHASE I: Estimate solution on the
interfaces

;
while Iµ,ν ⊂ ∪Nj=1∂Dij do

Select control points xi ∈ Iµ,ν , i = 1, 2, . . . ,Mµ,ν ;
Estimate the solution u at the control points xi
using a Monte Carlo method;
Calculate the interpolant uIµ,ν of uµ, ν using the
control points xi;

end

// PHASE II: Estimate solution in the
subdomains

;
for j = 1, 2, . . . , N do

Solve the PDE problem:;
Lijuij (x) = fij (x) x ∈ Dij ;
Bijuij (x) = gij (x) x ∈ ∂Dij ∩ ∂D ;
Lijuij (x) = hij (x) x ∈ Dij ; // hij (x)
constructed using the uIµ,νs

end
Algorithm 1: The Generic Algorithm.

only on selected subdomains that are of particular importance
to us.

III. IMPLEMENTATION AND USAGE

We start this section with a presentation of our basic
implementation3 of the algorithm described above. We note
that this basic implementation may be combined with either
the CPU/GPU or with the web services or a combination of
them. In the rest of this paper and for the simplicity in the
presentation and due to lack of space we only describe the
basic implementation.

Initially, the user needs to specify the problem (by pro-
gramming it in the source code), i.e., the right hand side
of the Poisson’s equation and the boundary functions, the
domain, and the desired partitioning of the domain (used for
the parallelization).

Then, the user needs to specify the resolution of the
Monte Carlo estimations, i.e., the number of points along an
interface between two subdomains whereat the solver should
estimate the solution using the walk-on-spheres method, the
number of (independent) walks that should be used and
ultimately be averaged so as to get an estimation, and the
boundary tolerance, i.e., the distance that signifies whether
a point is close enough to the boundary so that the solver
can assume that the value of the solution on that point is the
same as that on the boundary.

3Can be found at https://github.com/mvavalis/
Hybrid-numerical-PDE-solvers.

The solver runs in parallel the computations for each of
the points on the interface.4

Our implementation is based on the walk-on-spheres
method and follows the approach and the basic idea found
in [10] (Section II, pp. 126) and can be summarized as
follows. Assume that we want to estimate u(x0). Let s be the
current estimation of the solution, B(x) is the largest ball in
the domain centered at point x, q(y) is the right hand side of
the problem, and a(d) is a function associated with Green’s
function for the problem, which takes as input the radius of
the B(x). One walk requires the following computations.
step i: assign x0 to x; assign 0 to s;
step ii: if x is close enough to the boundary, go to step v;
step iii: find randomly a point y inside B(x), with respect

to the density of B(x) (more on this later); assign to s,
the sum of the previous value of s, plus the product of
q(y) multiplied by a(d);

step iv: find randomly a point on the surface of B(x), assign
this point to x; go to step ii;

step v: return s;
This process is repeated for enough many times, and the

mean of the estimations at the end of each process is used
as the final estimation. A more detailed exposition is seen in
the associated listing in the appendix.

Note that the first step in each walk is accomplished using
a quasi-random sequence (not evident in the listing). We
believe that the first step determines considerably more than
the rest of the steps, the region where the walk takes place;
therefore, using a quasi-random sequence for the first step
significantly helps us to make a more uniform sampling,
which in turn results in faster convergence.

Let us now consider how we find randomly a point
y inside B(x), with respect to the density of B(x)
(rand_update_y(x, y, d)).5 To calculate the new y
we need to calculate a new radius and angle of the vector to
add at the vector corresponding to the point x.

The probability density function (PDF) of the radius and
the angle is: ρ(r, θ) = 2r

πd2 ln d
r , and because it is independent

of the angle, we can choose an angle uniformly. Now we have
to find a new PDF (let’s say ρ(r)) for the radius: ρ(r) =∫ 2∗pi
0

ρ(r, θ)dθ = 2πρ(r, θ) = 4r
d2 ln d

r
We can choose a radius using the quantile function of ρ(r),

i.e., the inverse of its cumulative distribution function). How-
ever, we cannot compute the quantile function analytically,
therefore we use the rejection method [36]. 6

Note that maxx(PDF (x)) = 4/(e ∗ d)7 The rejection
method will work as follows.
step i: choose uniformly a random x1 in (0, d), and a

random x2 in (0, 4/(e ∗ d)).

4We could parallelize further by running all walks in parallel, but the
speed up would not be significant, especially if we take into account the
computation costs of the finite-element solver that are to follow.

5The details correspond to the two-dimensional case.
6[MATLAB script (to see the ρ(r)): d = 1; r = 0 : .001 : d; y =

(4/d2) ∗ (r ∗ log(d)− r. ∗ log(r)); plot(r, y);] The bell like form of ρ(r)
means that the rejection method is going to be efficient.

7We have (d/dx)(PDF (x)) = (4/d2)∗(lnd− lnr−1) = 0⇔ lnr =
lnd−lne⇔ r = d/e, that is maxx(PDF (x)) = max(2∗pi∗ρ(r, θ)) =
2 ∗ pi ∗ ρ(d/e, θ) = 4/(e ∗ d).
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step ii: check if (x1, x2) is below the curve of PDF, that is
if 2 ∗ pi ∗ ρ(x1, θ) < x2. If it is, we found our radius
x1, else go to step i.

1) Interpolation: There is a significant difference in our
implementation as regards to the interpolation between the
2-dimensional and the 3-dimensional cases. In case of the
three dimensions we need 2-dimensional interpolation. As
the latter is relatively complex in terms of computation we
precompute the interpolants and feed them to the finite-
element solver. We use Sintef’s Multilevel B-splines Library
(MBA8) library is used. In particular we [21]. Here, too, the
computations for each interpolant are executed in parallel.

In the two dimensional case the computations are rela-
tively simple and we have chosen not to pre-compute the
interpolants. Instead, we supply the finite-element solver with
the information needed to compute the required interpolants
on spot. For the 1-dimensional interpolation we use John
Burkardt’s SPLINE C++ library.

Clearly, in both cases, the points used for the interpolation
are the ones computed in the previous step of the Monte
Carlo estimations.

2) Finite Elements: The final step in the process is the
solution of each sub-problem (corresponding to each sub-
domain) using a finite-elements solver. Clearly, the compu-
tations for each sub-problem are executed in parallel. We
use the state-of-the-art C++ library deal.II9. This recently
developed and already widely used library [4] offers adaptive
finite element solvers of high quality for the numerical
solution of partial differential equations.10

IV. NUMERICAL EXPERIMENTS

A. 2-dimensional Experiments

We start by considering the rectangular domain Ω ≡
[−1, 1]× [−1, 1] and the Poisson equation

∂2u

∂x2
+
∂2u

∂y2
= f(x, y), ∀(x, y) ∈ Ω, (5)

where

f(x, y) = (1−π2) (sin(πx) sinh(y) + 4 cosh(2x) cos(2πy)) ,
(6)

subject to the following Dirichlet boundary conditions

u(±1, y) = cosh(±2) cos(2πy)
u(x,±1) = sin(πx) sinh(±1) + cosh(2x),

∀(x, y) ∈ ∂Ω.

(7)
The exact solution of the above problem is given by

u(x, y) = sin(πx) sinh(y) + cosh(2x) cos(2πy). (8)

and as depicted in figure IV-A has rather strong variations
along both axis allowing us to qualitative examine the
effectiveness of our system. For this, we decompose the PDE
domain Ω into the eight non-overlapping subdomains defined

8http://www.sintef.no/upload/IKT/9011/geometri/
MBA/mba-1.1.tgz

9http://www.dealii.org/
10Our C++ class LaplaceSolve is based on class LaplaceProblem,

implemented in the 4th step of the tutorial, in the documentation of library’s
version 6.1.0.
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Fig. 1. True solution of the PDE problem defined by (5)–(7).

by interface lines drawn at x1 = 0 and y1 = −0.5, y2 = 0
and y3 = 0.75, we solve only the PDE subproblems defined
by subdomains Ω1,0, Ω0,1 and Ω2,1.

We note here that besides the functions that define the PDE
problem (the right hand sides of the elliptic operator and of
the boundary conditions, and perhaps the true solution if it is
known) the user needs to give other parameters as those are
depicted in the following listing 1 which is in accordance to a
graphical user interface we develop. The detailed description
of this interface is beyond the scope of this paper.

Listing 1. Listing of the configuration file for the 2D model problem.
# ============================

# G e n e r a l P a r a m e t e r s
2 # Number o f d i m e n s i o n s
4 # Maximum number o f t h r e a d s

1 # Dimension X l e n g t h
1 # Dimension Y l e n g t h

2 # Number o f subdomains a l o n g d imens ion X
2 # Number o f subdomains a l o n g d imens ion Y

# ============================

# Monte C a r l o P a r a m e t e r s
1000 # Number o f walks
.0000000001 # Boundary t o l e r a n c e

# ============================

# I n t e r p o l a t i o n P a r a m e t e r s
3 # Number o f nodes a l o n g d imens ion X
3 # Number o f nodes a l o n g d imens ion Y

# ============================

# C o n j u g a t e G r a d i e n t P a r a m e t e r s
6 # l a p l a c e g r i d r e f i n e t i m e s

# t h e p a r a m e t e r s o f s o l v e r c o n t r o l ( )

For the numerical solution of the above mentioned sub-
problems we have utilized finite element methods from the
deal.II library. Different adaptive refinement strategies (h, h
and hp) based on local error indicators and error estimators
are supported and utilized. In Table I we present various
characteristics of these modules. Figure IV-A presents the
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quality of the computed solution and the effect of the
refinement mechanism. We only present data for a particular
sub-problem. The data associated with the other subproblems
are similar. Specifically, we present on the y-axis the L2 norm
of the error and on the x-axis the refinement level.

TABLE I
THE NUMERICAL CHARACTERISTICS OF THE FINITE ELEMENT

MODULES USED AND THE ASSOCIATED NUMBER OF EQUATIONS

REQUIRED FOR CONVERGENCE BY THE CONJUGATE GRADIENT

ITERATION SCHEME.

cycle 0 1 2 3 4
cells 4 16 64 256 1024

Q1 elements dofs 9 25 81 289 1089
CG iterations 1 6 23 51 103

Q2 elements dofs 25 81 289 1089 4225
CG iterations 7 31 70 142 286

B. 3-dimensional Experiments

We consider a slightly modified problem than the PDE
problem presented in the previous section as follows.

∂2u

∂x2
+
∂2u

∂y2
+
∂2u

∂z2
= x+y+z ∀(x, y) ∈ Ω ≡ [−1, 1]3, (9)

subject to the Dirichlet boundary conditions

u(x, y, z) = g(x, y, z) ∀(x, y) ∈ ∂Ω, (10)

where the right hand side function g is selected so that the
exact solution of the above problem (9)–(10) is given by the
equation

u(x, y, z) = exp(
√

2πx) sin(π(y+ z)) +
1

6

(
x3 + y3 + z3

)
.

(11)
and depicted in figure 3.

In addition to the functions defining the problem itself we
need as in the 2D case to specify various parameters. The
associated configuration file for our experiment is given in
listing 2 below. It is worth to point out the similarity of the
two configuration files for the 2D and the 3D cases (listings 1
and 2 respectively) allowing to write our programs almost
dimension independent.

Listing 2. Listing of the configuration file for the 3D model problem.
# ============================

# G e n e r a l P a r a m e t e r s
3 # Number o f d i m e n s i o n s
4 # Maximum number o f t h r e a d s

1 # Dimension X l e n g t h
1 # Dimension Y l e n g t h
1 # Dimension Z l e n g t h

2 # Number o f subdomains a l o n g d imens ion X
2 # Number o f subdomains a l o n g d imens ion Y
2 # Number o f subdomains a l o n g d imens ion Z

# ============================

# Monte C a r l o P a r a m e t e r s
1000 # Number o f walks
.0000000001 # Boundary t o l e r a n c e

0 1 2 3 4

10−1.5

10−1

0 1 2 3 4
10−2

10−1

Fig. 2. L2 error in the numerical solution computed by the FE methods
on domain Ω0,1 as a function of refinement levels (x-axis) for the Q1 and
Q2 elements (top and bottom figures respectively).

# ============================

# I n t e r p o l a t i o n P a r a m e t e r s
2 # Number o f nodes a l o n g d imens ion Y

# ( on t h e YZ p l a n e s )
2 # Number o f nodes a l o n g d imens ion Z

# ( on t h e YZ p l a n e s )

2 # Number o f nodes a l o n g d imens ion X
# ( on t h e XZ p l a n e s )

2 # Number o f nodes a l o n g d imens ion Z
# ( on t h e XZ p l a n e s )

2 # Number o f nodes a l o n g d imens ion X
# ( on t h e XY p l a n e s )

2 # Number o f nodes a l o n g d imens ion Y
# ( on t h e XY p l a n e s )

7 # Number o f l e v e l s i n t h e h i e r a r c h i c a l
# c o n s t r u c t i o n ( s e e MBA: : MBAalg ( ) o f
# M u l t i l e v e l B−s p l i n e (MBA) l i b r a r y )

# ============================

# C o n j u g a t e G r a d i e n t P a r a m e t e r s
6 # l a p l a c e g r i d r e f i n e t i m e s

# t h e params of s o l v e r c o n t r o l ( )

In a similar to the 2-dimensional case we decompose the
domain Ω into 16 non-overlapping subdomains defined by
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Fig. 3. The computed solution of the global PDE problem defined by
(9)–(10).

the interface planes x1 = 0 and y1 = −0.5, y2 = 0, y3 =
0.75 and z1 = −0.2. The computed solution of the global
problem is depicted in Figure 3. In general the computational
behavior of our method on the 3D problem is similar to
the 2D case one. Details presentation of the computational
characteristics of our method is beyond the scope of this
paper.

Here it is worth to mention that we have also developed ba-
sic procedures that automatically combine the local solution
into a global one and properly display it using several state-
of-the-art scientific visualization tools like the ones found in
http://www.tecplot.com and which has been used
for the Figure 3.

V. CONCLUSIONS AND PROSPECTS

Monolithic and such
The objective of our study is to increase our intuition about

the proposed algorithm rather than to attempt to prove new
results or even provide a computational tool for real world
problems. We have developed a system that realizes a meta-
computing environment that allow straightforward mixing of
diverse deterministic and stochastic modules. This allows us
to depart from the traditional monolithic numerical solver
development for multi-domain and/or multi-physics PDE
problems. Monolithic, hard to developed solvers are replaced
by smaller and more flexible cooperative numerical modules
(local PDE solvers, interpolants, random walk estimators,
etc.) that are highly tuned to the particular characteristics
of the subproblems involved.

Our study is by no means complete. In fact we consider it
as a first exposition of a wide effort that requires much fur-
ther investigations. Among the directions one could move is
to extended these hybrid methods to more general operators
[45] possibly with singularities [15], to operators of higher

order [16], [7] to problems with Neumman or mixed bound-
ary conditions [40], [42], [43] to non-rectangular domains
and virtually to any problem with known Green’s function.

An extension of our work to time depended problems
seems not difficult. Our optimism arises from related efforts
that already appeared in the literature (see [8], [41], [14]) or
others that are currently emerging [6].

We should note that the inherent parallelism in general and
on multilevel distributed heterogeneous systems in particular,
is of particular importance. Besides the inherent to the
Monte Carlo method parallelism the proposed hybrid method
enjoys several other parallel processing characteristics. These
include, multilevel parallelism and low communication com-
putation ratio. Preliminary numerical data support our above
claims while a systematic experimental verification of the
above mentioned advances of our methods is under way and
will be presented elsewhere.

Finally, we believe that our study is based on a new line
of reasoning that provides new intuition about the dynamics
of Monte Carlo simulations.
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APPENDIX

Listing 3. Random walks on spheres implementation
/∗ ∗
∗ @nof walks : t h i s f i r s t argument o f t h e f u n c t i o n c o r r e s p o n d s t o t h e number
∗ o f wa lks we are w i l l i n g t o make .
∗ @ x s t a r t : t h i s second argument i s t h e p o i n t wherea t we want t h e v a l u e o f
∗ t h e s o l u t i o n f u n c t i o n .
∗ The a l g o r i t h m e s t i m a t e s t h e v a l u e o f t h e s o l u t i o n f u n c t i o n a t @ x s t a r t by
∗ a v e r a g i n g t h e e s t i m a t e s o f t h e @nof walks d i f f e r e n t wa lks on s p h e r e s .
∗
∗ Some a d d i t i o n a l f u n c t i o n s are used i n t h e f o l l o w i n g :
∗ c a l c s p h e r e r a d ( x ) r e t u r n s t h e r a d i u s o f t h e l a r g e s t sphere , i n t h e domain ,
∗ t h a t i s c e n t e r e d a t @x
∗ f ( x ) r e t u r n s t h e v a l u e o f t h e s o l u t i o n f u n c t i o n on @x c l o s e t o t h e boundary
∗ q ( x ) r e t u r n s t h e v a l u e o f t h e r i g h t hand s i d e on @x
∗ /

double m c e s t i m a t e ( i n t no f wa lks , double ∗ x s t a r t )
{

i n t i , j ;
double m s o l e s t ; / / mean e s t i m a t e o f t h e s o l u t i o n

m s o l e s t = . 0 ; / / i n i t i a l i z e m s o l e s t
f o r ( i =0 ; i<n o f w a l k s ; i ++) {

double x [ 2 ] ; / / randomly chosen p o i n t on t h e boundary ( random d i s t r i b u t i o n : u n i f o r m )
double y [ 2 ] ; / / randomly chosen p o i n t i n s i d e t h e s p h e r e ( random d i s t r i b u t i o n : d i c t a t e d by t h e Green f u n c t i o n )
double s o l e s t ; / / c u r r e n t e s t i m a t e o f t h e s o l u t i o n
double d ; / / r a d i u s o f t h e s p h e r e a t hand

x [ 0 ] = x s t a r t [ 0 ] ; / / i n i t i a l i z e x
x [ 1 ] = x s t a r t [ 1 ] ;
s o l e s t = . 0 ; / / i n i t i a l i z e s o l e s t

whi le ( ( d = c a l c s p h e r e r a d ( x ) ) > b t o l ) { / / i . e . , x i s n o t c l o s e t o t h e boundary
r a n d u p d a t e y ( x , y , d ) ; / / up da t e y
s o l e s t += ( d∗d / 4 . ) ∗ q ( y ) ;

r a n d u p d a t e x ( x , d ) ; / / up da t e x
}

s o l e s t += f ( x ) ;

m s o l e s t += s o l e s t / n o f w a l k s ;
}

re turn m s o l e s t ;
}
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